Monotone Local Linear Quasi-Likelihood Response Curve Estimates
نویسندگان
چکیده
منابع مشابه
Likelihood Based Inference for Monotone Response Models
The behavior of maximum likelihood estimates (MLEs) and the likelihood ratio statistic in a family of problems involving pointwise nonparametric estimation of a monotone function is studied. This class of problems differs radically from the usual parametric or semiparametric situations in that the MLE of the monotone function at a point converges to the truth at rate n (slower than the usual √ ...
متن کاملLocal quasi-likelihood with a parametric guide.
Generalized linear models and quasi-likelihood method extend the ordinary regression models to accommodate more general conditional distributions of the response. Nonparametric methods need no explicit parametric specification and the resulting model is completely determined by the data themselves. However nonparametric estimation schemes generally have a slower convergence rate such as the loc...
متن کاملFuzzy clusterwise quasi-likelihood generalized linear models
The quasi-likelihood method has emerged as a useful approach to the parameter estimation of generalized linear models (GLM) in circumstances where there is insufficient distributional information to construct a likelihood function. Despite its flexibility, the quasi-likelihood approach to GLM is currently designed for an aggregate-sample analysis based on the assumption that the entire sample o...
متن کاملLocal Polynomial Kernel Regression for Generalized Linear Models and Quasi-Likelihood Functions
Generalized linear models (Wedderburn and NeIder 1972, McCullagh and NeIder 1988) were introduced as a means of extending the techniques of ordinary parametric regression to several commonly-used regression models arising from non-normal likelihoods. Typically these models have a variance that depends on the mean function. However, in many cases the likelihood is unknown, but the relationship b...
متن کاملPointwise a posteriori error estimates for monotone semi-linear equations
We derive upper and lower a posteriori estimates for the maximum norm error in finite element solutions of monotone semi-linear equations. The estimates hold for Lagrange elements of any fixed order, non-smooth nonlinearities, and take numerical integration into account. The proof hinges on constructing continuous barrier functions by correcting the discrete solution appropriately, and then app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications for Statistical Applications and Methods
سال: 2006
ISSN: 2287-7843
DOI: 10.5351/ckss.2006.13.2.273